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1 .O SUMMARY 

This document describes the design and usage of two main subprograms using direct 
methods to solve large linear complex systems of  the form Ax = b, whose coefficient 
matrices are too large to be stored in core. In the first main subprobram, the basic idea is 
to reduce the matrix to  an upper triangular matrix and subsequently solve the problem 
by backward substitution. A row interchanging strategy called “tlireshold pivoti tg ” is 
adopted to preserve numerical stabilitv and to minimize disk-transfers. This algorithm does 
piof yield the usual LU factorization of some row permutation of the coefficient matrix. 
Thc- r,-.cond main subprogram is designed for Linear systems with a certain sparse structure, 
namely. the matrix can be written as B + D where B is a block-banded matrix, and D has 
only a few columns of nonzeros. A variant of the Sherman-Momson updating formula is 
employed in this case. The second main subprogram calls the first main subprogram to solve 
B(x.y) = (b.u) where x,y are unknowns, b is the right-hand side of the linear system 
( B  $. D)x = b, and U is the nonzero columns of D. 



2.0 INTRODUCTION 

'This document describes the design and usage of two FORTRAN main subprogrms for the 
C ' I X  digital computer systems, namely subroutine ETCGP and subroutine ETCSM. These 
subroutines were written as part of a research effort investigating unsteady transonic flow. 
References 1 through 5 present a procedure for analyzing the flow about harnionically 
oscillating airfoils and wings in the transonic regime. This procedure is based on mall  per- 
turbations. A solution is formulated using finite difference techniques which results in a 
large set of simultaneous equations, written matrix forni as 

?j.here A is a sparse coniples matrix of order equal to the number of mesh points. The 
matrix h is a comples niatris with the number ofcoli:mns equal to the number of modes for 
ivliicli presslire distributions are to be found. The mmix  A may be of order 3.500 for a 
pra;tical two-dimensional airfoil. 

Numerical solutions to equation ( 1 ) were initially obta in4  using relaxation techniques. 
Ihvever. for a significant range of practical values of hnach number and reduced frequency, 
esperience showed that relasation technique*. applied to  equation ( 1) failed to  converge. 
Tlie matrix A in equation ( I does not possess any of well-known properties (e.€.. positive 
de finiteness. diagonal dominance) which guaraiitee the convergence of relaxation methods. 
However. the physical origin of equation ( I )  guarantees tlie existence of a unique solution. 
Thus the obvious allerndive is a direct solution method, which assumes no properties of 
tlir matrik X other tli;in existrncc of a unique solution for an equation of the form of ( 1 )  
when any arbitray matrix h is applid.  

Oiit-of-core algorithms have been discussed in standard textbooks of numerical analysis 
(e.g. Reference 6) .  These algorithms are numerically as stable as the well-known regular 
(-. t.itissian .-' eliniination, yet they are not designed for efficien! execution in modern day 
coniputers. The physical origin of equation ( 1 )  makes '-blocking" of the i;:.itri\ A an 
olwiotis and  ;ittractive data structure. Yet esisting "blocked linear quation solvers" at best 
;isclime non-singularity and the well-conditioning of the i-th diagonal suh-block at the i-th 
blocked pi\ot;il step (e.g. Reference 7) .  This property is unnatural and is not hiised on the 
physics of thi. problem. Out basic rilporitlim does not require the matrix A to liave this 
particular property. As stated i n  tlie above paragraph. the only property of A i t  assumes 
is nun-singularity o f  the matrix A .  I t  also takes into consideration numerical stability and 
computational efficiency. Sections 43 and 44 discuss these advmtages in det;iil, 

Tli: FOK'T'KAN subroutines JcscrihcJ Iiere are applicable t o  both dense ;ind sparst' matriccs 
tila! 

form of equation ( I ), i n  particul;ir i n  the  c;iw wlicn tlicrc is nu iiseful properties ot  tlic 
matr ix  .A t o  guarantee convergence of any iterative nielhotls. For c\aniple. subroiltine 
ETC(;P ;is well ;IS the version for re:il niatrices) has Iwcn iisctl i n  tIiI'tcrent rcsearc.11 and 
prod tic t ion co ni 17 ut e r cod cs ;I t t I IC Boci ng ( '( i ni pan y . 

too large to he storel! i r ~  core. Thus they are iisefiil for solving any qu;ition ol' t l ic  

2 



Results of applying the routines of this document together with th program described in 
reference 5 are presented in reference 4. The development ot the routines of this document 
was in conjunction with work described in references 4,5, and 8. 

The first step in developing the algorithm for solving equation (1) is to  partition the 
augmented matrix [ AIB] into blocks so that it can be considered to have the following 
structure : 

A 1 2 -  - AIS 

A22' . A2S 

ASS 

Figure 1. - Data Structure 

Each block is stored as a record in mass storaqe with the requirement that at least three 
blocks can he held in core simultaneously, and the diagonal blocks are square blocks. The 
mass storage used should be a random access file (called direct access file in the IBM nomen- 
clature). 

The methods used in both main subprograms are direct methods. In the first main sub- 
program. the basic idea is to  reduce the coefficient matrix to  an upper triangular system. 
In the second main subprogram. the coefficient matrix is assumed to have the for B + D, 
where B is a block-handed matrix. and D is a matrix with only a few columns of nonzeros. 
A variant of the Sherman-Morrison updating formula is employed. 

Features of the two subprograms include options to 
0 

0 

0 

0 

Solve more than one set of right-hand sides 
Control the frequency of pivoting 
Access the submoduli of the main subprograms 
Take advantage of the block sparsity of the coefficient matrix. 

In  section 3.0 we shall list our symbols and nomenclatures. In section 4.0. we shall discuss 
the algorithms in detail. analyze their numerical stabilities. remark on their FORTRAM 
implenientation and compare our approaches with outer approaches outlined in the liter- 
ature. In secion 5.0, we shall discuss in detail the usage of the two subprograms. 

3 



3.0 NOMENCLATURE 

AT 

Upper triangulur 
matrix 

Block profile 

matrix 

A is a matrix, the entry of the i-th row and j-th column is 
denoted by ai, j 

A is a matrix partitioned into blocks, the block in the i-th 
block row and the j-th block column is denoted by Ai, j 

The transpose of A 

Matrix with all zeros below the diagonal 

Matrix of the form: 

(where the shaded area indicstes noli-zero entries) 

4 



Block-Banded 

matrix 

Mat ix of the form: 

Threshol. $voting 

and pivotal 

tolerance 

(Where the shaded area indicates non-zero entries) 

Threshold pivoting is a row interchanging strategy controlled 

by a pivotal tolerance parameter p. The p rarameter is a 

real number such that 0 Q p Q 1 . If A = (ai, j) , and 

ai, i 2 max 

otherwise interchange rows i and m where In = max. 
j > i  

, then there is no row interchanging, j > ;  l a d  

Random Access file Multi-record mass storage inputloutput file which allows the 

user to  create, access and modify its records on a random 

basis without regard for their physical positions or  internal 

structures. (They are called direct access files in IBM 
nomenclature.) 

Sherman-Morrison Updating Formula for A = B + UV T : 

~ - l =  B - 1 -  B-IU (14 + VTB-IU)- 1 v T B -1 

5 



Matrix norms: IlAll = max. { f: I a ~ l }  
1 J 

Condition Number of  a nonsingular matrix 

m = 1, 2, ....oo 

Growth (growth factor) 
of a reduction reduction process 

process 

The largest absolute value of  the numbers generated by the 

6 



4.0 DISCUSSION 

In this section, we highlight the special features of our algorithms. In sections 4.1 t o  4.4, 

we shall discuss Algorithm 1. which reduces the coefficient matrix to  an upper triangular 

niatris and solves the problem by backward substitution. Then we shall remark on 
FORTRAN implementation and compare the efficiency of this algorithm with the ap- 

proaches outlined by Bjorck and Dahquist (ref. 6).  and Reid, (private communication). 

In  sections 4.5 and 4.7, we shall discuss Algorithm 11, which employs a variant of the 

Sherman-Morrison updating formula. Then we shall remark on its FORTRAN implementa- 

tion. and the numerical stability of our particular applicstion of the Sherman-Morrison 

Lpdating formula. 

4.1 ALGORITHM I (SUBROUTINE ETCGP) 

For the convenience of discussion, we shall firstly assume the coefficient matrix A to  be 

dense. We shall show how the algorithm can be modified for a block-profile system. 

We shall first illustrate the algorithm with a 3 x 3 block system, and assume no row inter- 

changing is nccessary. In this case, the algorithm yields Crout's LU decomposition. The LU 
factors can replace the original coefficient matrix A on disk. Assume. grapliically. A is 

stored on disk as in the following figure. 

Figure 2. -Original Matrix 

In hie firsf block pivotal step, we form the LU factorization of A1 I , A1 1 = L l U l  and 

replace A I  1.AI2,A13.A21,A31 asin figure 3. 

7 



Figure 3. -After First Block Pivotal Step 

Fori  = 2,3,  write L1 - lAli  as Uli, and U1- 1 Ail as $1- 

In the second blocl: pivotal step, replace A22 with A22 - % 1U12, the decompose the 

resultant into its LU factors, and complete the rest of the second block pivotal step as 
illustrated in fig. 4. 

- 
Ll"l u1 2 

L2 I A22 

L3 1 A32 A33 

111) 

u12 '13 

(L2U2) L11(A23-  L21'13) 
A22 - L21U12 

A33 

Fiqure 4. -Second Block Pivotd Step 

Write L2(A23-L21 UI 3) as UZ3, and U2(A32-L31 U12) as Ly. a In the Lhird pivotal step, 

we rep1ace *33 with A33 - L3 1 u13 -L32 u23 and decomplse the resultant to its LU 

factors. The third block pivotal step can be illustrated by fig. 5 .  

Flu1 "12 '13 

L2u2 

L3 2 
A33 - 

'23 

J 

?"23 1 
Figure 5.-Third Block Pivotal Step 
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Thus we have reduced the matrix A to an upper triangular matrix, and thus equation (1) can 

be solved by backward substitution. 

Now we shall explain our row interchanging strategy, which is commonly known as 

tltreshold pivotitig. A real number p is chosen so the 0 Q p Q 1. We perform row inter- 

changing only when Iaiiil < p * Max. Iajil . 
j > i  

Note that if p = 0, there is no row interchanging at all; if p = 1 ,  we have the regular row 

interchanging. We shall illustrate the application of this row interchanging strategy to a 

2 x 2 block system: 

a3 2 

Figure 6. -First Pivotal Step of a 2 x 2 Block System 

In  the first pivotal step, we first decompose A1 1 into its LU factors with pivoting, i.e.. 

A1 1 = L1UlPl. then replace A12 with L1-'PIAl2. 

Wc have to interchange row 1 of  U1 with row 1 of A?,], then eliminate u1 1 and a41 with 

a31 as the pivot, the resultant is as follows: 
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We have to interchange tow 2 with row 2 of A21, and eliminate u12 and u22 with a42 as a 

pivot, the resultant is: 

After the first block pivotal step, the disk storage should be as follows: 

Multipliers and 

(In the formal description of our algorithm, we shall write LlFlA12 as U12, and the disk 

record that stores the multipliers and pivoting information as indicated in the previour 

diagram L 7 L l.) 

The following is a formal description of Algorithm I: 

Algorithm I 
Let A be an n x n block system 

b i = 1 step 1 until n do 

For j = i step 1 until n d o  

Read 4j into core 

Fqr k = 1 step 1 until i-1 do 

Read Ljk, uk j  into core 

by repeating the row operations done to  

If  there is row interchanging betvrePn [;I, rewrite uk j  on disk. 

10 



Enddo 
if j=i 

%i = L.U*p. I I 1  

Aij' 1 I J 

Else 
L.'lP,4. 

Endif 

RewriteAij on disk (rename $j 3s U, 
Enddo 

For j = 1 step 1 until n d o  

Read Aij into core 
For k = 1 step 1 until i - 1 d o  

Read Ljk, uk i  into core 

Modify by repeating the row operatioils done to  

If there is row interchanging between 

Enddo 
Eliminate Aji from [;J with row interchanging if necessary. 

Store multipliers and pivoting information as L,i on disk. 

Enddo 

Enddo 

Repeat the same row operation to the right-hand side. and solve for x by backward . a b -  

stitutir?. 

Not\ : 

1 .  11  L L I ~  is no interblock pivoting, it requires two disk read/write's in the innermost 

do-loop; otherwise, it requires three. 
Nowhere in the algorithm do we assume non-zeros in the diagonal blocks. Although 

nonzeros in  the fins1 upper triangular form will indicate matrix singularity, and back- 

ward substitution will be impossible to carry out. 

2 .  
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Now we shall show how the algonrhm can b- modified for a block-profile system. 

Defrne an n x n matrix K such that: 

K(i. j)= 0 indicates the (i, j)block is a zero block 

K(i. j\f 0 indicates K(b j)is the location of the (i, j)block (a nonzero block) on disk. 

For example, for the following block-profde matrix, 

Where the shaded area indicates the nonzero blocks, its corresponding K matrix can be 

.2 
3 
4 
6 
10 

5 
7 8 

- 

9 
11 
- 

We call the K matrix the profile matrix of the matrix A. 

In subroutine ETCGP, we scan the profile matrix to determine the beginning and end of 
each block row and block column, and change the “ends” the do-loops in the algorithu 

accordingly. To h..iidle the “jill-in ?”of the zero blocks (Le., if the (i, j)block is originally 

a zero block. but the reduction process turns it into a nonzero block), we find the maximum 

entry of the original K matrix, rn, &.id set K(i, j)= m + 1, update m by adding 1 to it, and 

revise the information on the beginnings and ends of the i-th block row and j-th block 

colump if necessary. 

4.2 RLMARKS ON FORTRAN IMPLEMENTATION OF ALGORITHM I 

1. Storage of the multiplieis and pivoting information 

Suppose the i, j biock is a nonzero block that is nix”,, and i>j. The number of words 

in its corresponding record on disk is 2*(ni*n,)+nj+l Before the j-th block pivotal step. the 

first 2*(ni*nj) words stored the entries of the ( i j )  block, and the last n4-l words are zeros. 

After the j-th block pivotal step, the first 2*(n;*n,) words store the multipliers used, and 

the last nj t l  words store the pivoting information. We can consider this record as consist- 

J 
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ing of two stparate arrays: an array of complex numbers, A(n..n.), and an array of integers. 

I(nj+l ). In tlie 2 x I hluck system we used to illustrdte the threshold pivoting discussion. 

after the first pivotal step. the (2.11 block offre 6.. that is A?!. & is stored as an a m y  of  
coniples nutiihen. A(2.3). (LS 

1 1  

and the pivotal infomiation is stored in the integer a m y .  l(3). as 

The two arrays arc packed as one record on disk. 

L he matrix A stores tlie actud niultiplien used in tlie reduction process. I( 1 )=I indicates 

the lint row of A- I interchanged with row 1 of the upper triangular matrix U l  before the 

first column of A, 1 is t.liniinat.-d. I( 3)=3 indicates tile second row of A, 1 interchanged with 

row 2 o f  U before the second column of A? - 1 is eliminated. 1(3)=1( I )+I(  2)X indicates 

there is interblock pivoting between the lirst block row (the pivotal hlock row) and the 

second hloc*k row. If there is no interblock pivoting in this step. I (  I PO. and 1(2)=0. thus 

1(3)=0. A s  i t  is  ohvit .IS f rom this example. I(k)=O indicates tki t  no row interd1iinge is 

needcd to eliniin~te the k-th column of the (i.j)block. l (k )=n iX indic;itrs t1i;it the i n - t h  

row o f  the ( i  j, hlock is iiitercl1:ingc~d with the k-th row o f  the corresponding uppcr triang- 

uh r  niatrix [ I .  Iwfore tlic A - t h  colutiin of  tlic (i. i)Moc.k is eliminrlted, :ind 

I(nj+I )=I(  I HI(2)t .  . .+l(n.). It' I(njt i )=O, it indiccitcs tli.it tlierc is  no i*iterhlock pivoting 

Iwtwceii tlic i-111 mid i-111 rows: if I(n.+l )>O.it in1iic;ites that there is interldock pivoting 

hetwc.cn tlic i-111 ;itid j-th hlock row. 

- 
- - 

.I 

.I 

J 
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In subroutine ETCCP, this operation is camed out by a Compass subroutine CCSMAB 
which is about five times faster than straight FORTRAN. Even if there is interblock row 

pivoting, we still can take advantage of CCSMAB. Consider the situation in the innermost 

do-loop in the description of Algorithm 1. We have the following blocks in core: 

If there is no pivoting between the i-th and j-th block row, the operation can he repre- 
sented by the following equation: 

where L is such that 

If there 1s pivoting betwecn the i-th and j-th block rum. then the operation can be repre- 

sented hy the following equation: 

where P is that permutation matrix that interchanges the rows and Lis such that 

14 



The re fore 

Also writ? 

The re fore 

A h 
-rhus in ETCGP. we compute ukj = L ~ - ~ U ~ ~  then use CCSMAB to compute -  MU^^ . 

Note that M is just the lower block o f  P and can be eoniputed quite efficiently by 

forward substitution. (The following describe the cornpution M and U = L , - I u k j  - 
M would ovcrwritt' Lik. and U would over write Ukj. We shall call Gk. M and Ukj. U and 

the x t u a l  row and column dimension o f  U, NR.  and NC.) 

For ni=2 stcp 1 until NK d o  

If I f  111 

k=lr 111 

For h=l step 1 itntil NC do 

I ~ I I ~ .  11)  = U(ni, h )  - 
ni - 1 

s =  I 
MOi. si*U@. I! 

1;. nJJ0 

15 



For h=l step 1 until m-1 do 

M(k.h)=o 
Enddo 

Else 
(no operation) 

Endif 

Enddo 

3. Pivotal Tolerance 

At this point, we cannot give any theoretical guidarrci on the choice of the pivotal tolerance 

p. Experimaentdly, p = 0.001 proves to  be satisfactory. In ETCGP, we store p in a labelled 

common block 

COMMON/ETPIVOT/U 
and U is set t o  0.001 by at  DATA statement. c‘he use; can reset the value of U by any ex- 

ecutable statement before calling ETCICP. 

4. Monitoring of Stability 

ETCCP keeps track of the ‘&nvfh”of the reduction process (which is the largest absolute 

value of all the numbers generated by the reductic I process). Our motivation for keeping 

track of the growth is explained in section 4.3. 

ETCGP also generates an extra right-hand side row *.vhic:h is the row sum of the coefficient 

matrix A. It subtracts ( 1  .O.O) from each element in the solution of tb J extra right-hand side. 

The resultant gives some indication of the “smul1ness”of the residue Ax-b of the actual 

problem. 

4.3 NUMERICAL STABILITY OF ALGORITHM I 

Reid (ref. 9) and Wilkinson (ref. IO) have analyzed the stability of the .kular Gaussian 

elimination. If  L and U are respectively computed lower and u y ? i  ~riangular factors of A. 

the A. L and U are related asfollows: 

A = L U + E  

I J  
with E=(e.. .)and IepjlQ 3.01 *m* E %  
where m is the order of A, and E is the machine pr. -ison. (:n CDC eqiiip:.ient, c = 

g is the growth of the reduction process. 



Reid and Wilkinson analysis cannot he extended in any obvious iiiaiiner to give a pmctical 

hound for E for Algoritlini I of this document. The best we can do at present is the 

I'i, i ui. n 

Aj,i Aj, i+ I . . . .  . . . . .  Aj. n 

Ui, i + I . . ~. . . . , . 

L 

wlierc Mi is the matrix that performs the ith block pivotd step 

E . =  I (rkli)  leklil Q 3.01 * E * gi with gi being the growth of 

thc tist i t h  block pivotal step. 

The main difficulty is due to tlir fact that we d o  not use the same pivots for eliiiiinatirig 

tlic sul.rciiagona1 elements in  the sanie column. Thus 
hlI-'M--'. . . M['l$ * E, for i =  1. 2 , .  . .. M 

whilst equ;ility lioltls for the above expression in the regular Gaussian elimination. However 
c'acli block pivotal step the process of eliniinating the lower triangular eleinents of ji. from 

Ai. n 

anti the process of rliniination Aj, ifrorii 

for i < j < 11 are regular Gaussian elimination. Thus the "grorcvtli * '  of Algorithm 1 at least 
gives the local stahitit) of t l i c w  substeps. The norni of tlie difference o f  the computed solu- 

tion from the actual soltition give a realistic boilmi for the norm of E, because the sclual 

solution \ satisties tlic equation A s =  I.. tlie computed solution y satisties t'w rqiirition 
(.A + 1i)y =h. 

~l'llUS 

A s  = ( A  + I3y 

t i f  .\ = 1:y 

17 



4.4 COMPARISON OF ALGORITHM I WITH OTHER APPROACHES 

13jorc.k and Dahlquist (ref. b) and Keid (ref. 8)  have proposed apprortclies to the problr!n 0 1  

solutions of large dense linear systems. BjorcA and Dalilquist's approach follows. 
The iiiatril is partitioned in to  block rows: 

with the requirement that a miiliniuni of two block rows cm be held in core simultaneously. 
The tifit b l o ~ k  pivotal step c:~n be described as follows: 

I .  Kttaii into core anti retilice it to wit11 regtitar Gaussian elimination. 

2.  For j=2.3. . ..n r e d  A. into core reduce 
J 

to 

witti  row-intcrcli;ingrs bvhen nccessary. and write A; back onto disk. 

18 



eliminated elements by multipliers and using row interchanges. Note that for i > 3 
the modified block A1 1 is upper triangular and advantage may be taken of this. 

2. For j=2.3. . .n read in blocks (iy) modify tliem using the multipliers and interchanges 

held in (:(:) and then write them back to  disk. 

3. 
The remaining block pivotal steps are performed similarly. Operations on the right-hand 

side vector may be performed subsequently using the stored multipliers or at the same 

time as the elimination. 

Write modified block $1 to disk. 

Approaches Features 

Dahlquist 

and Bjorck 

two block rows are needed in core 

Reid four blocks are needed in core 

four disk read/write's in the 

inner most do-loop 

Algorithm I 

(without pivot- 

three blocks are needed in core 

t.. 3 disk read/write's in the 

in& inn most do-loop 

Algorithm I 

(with the worst most do-loop 
possible case of 
pivoting) 

three disk readlwrite in the inner 

Reid has proved that given the same amount of core, the block row storage scheme is only 
efficient for matrices of order of less than 300. For large matrices, Algorithm I requires the 

least amount of disk input/output. The following table summarizes the features of the three 

approaches. 

No. of 
disk access 

4 m 
4- 
N* 

* rn IS  the order of the matrix, and N is one half of the number of words 
available in core. 
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4.5 ALCORlTHM 11 (SUBROUTINE ETCSM) 

Algorithm 11 is designed for coefficient matrix with a special sparsity structure: * x x  
x x x  

A =  [;;:;;] x x x  x x  

x x  

We can write A = B + D where B is a banded matrix: 

B =  

D =  X 
X 
x x  
x x  
x x  
x x  

*The x’s are single elements 
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T D can be written as D = UVT, where U and V are as follows: 

u =  

x x  

o o l o o o c  J O O  

O O O O l O O O O Q  VT= [ I 

Thus to solve a x = b, we apply the Sherman-Morrison updating formula 

The algorithm I1 can be described as follows: 

1. 

2. 
Reduce B to an upper triangular matrix with Algorithm I. 
Repeat the row operation in 1 to [blU]. Solve for B [z,y] = [b,U] by backward 
substitution. 

Conipute [S,Tl = VT [z,y]. 

Decompose (I+T) into its LU factors with row interchanging. 

Solve for w in the equation (I-T) w=S by forward and substitution. 

3. 
4. 

5 .  

6. Comnute x=S-T*x. 
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4.6 REMARKS ON FORTRAN IMPLEMENTATION OF ALGORITHM I1 

In this section, we shall use the notation we have defined so far 

1. 

We partitioned U comformable to the partitioning of the coefficicnt matrix A: 

Storage of U and V 

and store them on disk in the same block which stores the corresponding partition of the 

right-hand side. 

Since the matrix V only consists of ones and zeros, we d o  not store V explicitly. 

We use two-dimensional array: 

INTEGER N(MR,MC) 

where MR 2 the number of Flock cchmns that contain element columns in the matrix 

D=UVT, and MC > 2 + the total number of columns in the matrix U. The contents of N are 

defined as follows: 

Let i 1 .iz.. . . . be the indices of the blocks that contains columns of D, and then 

N(1.1 )=il 

N(2.1 )=iq - 
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i 

Suppose for j=1,2. . . all (ij,m) blocks for some m > kj contain the nonzero elements of 
D, then 

N( 1,2)=k 1 

N( 2,2)=k2 

It is important that N(j,n(j)+3) be set to  zero, so that the program know the mj,nu) is the 

last column from the ij-th block column to go into D. The following 3 x 3 block system 

will illustrate our scheme: 

A =  
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D =  c ; ;  x x  x x  ; 
x x  

1 
-j 

N( 1 , l  ) = I  meaning the first block column contains columns for D 
N(2,1)=2 meaning the se,;ond block column contains columns for D 
N( 1,2)=2 meaning in the first block column, only (m,l),m 2 2 contains columns for D 
N(2,2)=3 meaning in the second block column, only (m.2),m >3, contains columns for D 
N( 1,2)=3,N(1,4)=5,N( 1,5)=0 meaning only the third and fifth columns of the first block 

column belongs to D 
N(2,3)=3,N(2,4)=0 meacing only the third column of the second block column belongs 

to D 

2. Computation of VT(z,y) (Step 3 of Algorithm 11) 

Since V is not storc d explicityly, we use the following: 

(Let NB be the number of block columns that contain cci.imn of D, L be the total number 

of nonzero columns of D, and the two-dimensional array N, is as defined as before, and 

NC=L+number of right-hand sides.) 

g= 1 
For 1 = 1  step 1 until NB do 

k=N(i, 1 ) 
Read Tk=bk.Uk into core 

Forj=3 step 1 until LU+2 do  

m=N(i, j) 

If  m=O, then exit do-loop with index j 
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Otherwise 

S(S,h)=Tk(ln b) 
Enddo 

g=g+ 1 

Enddo 

Note that the array S contains vT(z,y) 

4.7 NUMERICAL STABILITY OF ALGORITHM I1 

Suppose A and B are matrices of order n and are related in the following manner: 

A = B + W T  

v here U at;d V are nxr mtr ices  with r -51, and both U and $' are of rank r. Then it follows 

from a variant of the well known Sherman-Morrison formula (ref. 6) that 

where 1, is the identity matrix of order r. Assume B is well-conditioned and has been 

decomposed into LU factors B=LU, then equation (3) prcvides a very efficient method to 
solve the linear system 

Ax = b. 

However, a general concern when using equation (3) is that the matrix 1, +VTB-'U) 

may be ill-condiiioned. In this section, we prove a sufficient condition for the vpell condi- 

tioning of (I,+vTB-~c) 

( 

Before we proceed, we state the usually accepted definition of the condition number of a 

matrix and an inequality related to it. 

(4) 

Let A be an nxm, n k n .  matrix with linearly independeat columns, then the conditional 

number of A, denoted by k(A) is such that max. IlAxll 

min. II Ax11 
llxll= 1 

llxll= 1 

k(A) = 
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It is also true that 

k(A) 2 llAll2 *lh+11, 
where A+ = (ATA)-'AT , the generalized inverse of A. 

Let R(A) be the nnge of A. Inequality ( 5 )  is obvious from the fact that: 

Further, if A is nonsingular, equality will hold. 

k e  now prove r r~ t  following: 

Theorem 1. If A and B m- related as in equation (2), and A and B are invertible, then 

(I - VTB-~U) = U+AB-+J 

(I - vTB-~u) = VTB-~A (vT) + 

(6 )  

(1) 

where U' = (U'U) -'UT , and (VT )+ = V (V'V) 

gtrierdlized inverszs of U and V, respectively. 

are the 

Proof: Note 
A = B-UVT 

= (In - UVTB-*) B 

:. AB-IU = (U - UVTKIU) 

:. AB-IU = ( ur - V W U )  

:. (I, - V T B - ~  u) = U+AB-IU 

Thus we have proved the validity of equation (6). The proof of equation (7) is simila 
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The following equations are direct derivations from equations (6) and (7): 

(I - v ~ B - l u ) - ~  = u + BA-IU ( 8 )  

( I  - VTB-]U) = VTA-'B ( VT ) + (9) 

Combining equations ( (6). (71, (8). and ( 9 )  with the fact that 

for any two matrices C and D. 
IlCDII, Q IlCllzllDII, 

k ( 1 - V  T B - I  U)  < min. (P1,92 ,931 k ( A )  k(B). (10) 

Inequality ( 10) states that if A and B are well-conditioned, and either U or V is well-conditioned 
then I + V  T I  B- U is well-conditioned. 

computed quite econoniically and the physical problems that yield matrices A and B usually 
give some indication of their vell-conditionin_g. The well-ccinditioning of B and 

r'nsures that the solutions of B~ = b 
0 

By = 11 

(1 + VTB-'U)Z = VTxo 

can be computed with satisfactory accuracy. Thus the solution of Ax=b via equation (3) 
can be computed with satisfactory accuricy ( 1  I ) .  

I n  our particular application of the Sherman-Morrison updating formula. V T V is a permu- 

tation matrix, thus 

timed. Algorithm 11 is u l w u ~ ~ s  stable. 
llv+l!;. llvll7 = 1 .  Therefore as long as A and B are both wellcondi- - 
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5.0 COMPUTER PROGRAM USAGE 

5.1 MACHINE AND EXECUTION ENVIRONMENT 

The alporithms described in the previous section are programmed zs a FORTRAN sub- 

routine library (which we call OCSLIB out-ofcore solution library). The subroutines are 

written for the FTN compiler of the CDC computers. 

5.2 OPERATING SY =EM 

This subroutine iibr-ry is designed for NOS 1 . I .  Its compass subroutines are optimized for 
the CDC 6600. 

5.3 TlMING 

Tiniing is hardware and operating system dependent. l 3 e  following formula gives a very 

rough estimate for the timing: 
3 CP second = 1/2 * n * pc* k 

where n is the order of the linear system. and p is the band-width and k is machine- 

dependent. To estimate k. make a sample run and compute k using the abovc formula. 

For the Cyber 175. k 2 8 x lo-? 

5.4 FILES AND FILE FORMAT 

OCSLIB tisrs at least one randoni access file. OCSLIB has each block of the coefficient 

matri \  as a record. If the block is ni x nj. then the record length is 2*ni*nj + nj + 1 .  

5.5 VSAGE 

5.5.1 USING ALGORITHM I (SUBROUTlNE ETCGP) 

We recommend the following precedure: 

Stcp I .  Dctine the block system of the coefficient matrix: choose a sequence of p~sitive 
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integers n 

I .O. so that the block Akjis ni s n-. The partition is to be chosen so that at least three 

blocks can be held in core simultaneously. 

n 1, . . . IIN to partition the matrix into a block system like fig. 1 of section - 
1 

Step 2. Define the block profile of the matrix: define an array 

ISTERGER INDEX (M.M+I)  

such 'hat hlB N, and INDEX(i, jF0 if the Ai. is a zero block. 
INDES(i.jO0 if the Ai. -has at least one nonzero entries. J 

thew we consider bk=Ai N + I .  for k l . 2 .  . . . . N) 

Step 2. H'rite the auguniented mistris on disk for ETCGP.nk (k=l.2. . - . N) at a time. 
In this step we provide 3 subroutine ETBhKiEN to write a block row of the augmented 
matrix on  disk in CL format that is acceptable by ETCGP. Thus we shall describe the usage 

and argument list of ETBMGEN. 

COhl PLE X W( M XK ,M XC) 
INTECE R INDEX( MT.MT+ I hJN( NT2).NDBLK(NTI ) (where NT I>NTBLKS+I 

NT2XiiBLKS**2 + NTBLKS+3) 

DO 10 I= I .  KTBLES 
(Code to generate the i-th block row of tile augmented matrix.) 
CALL ETBMG EN( I .NTAPE, IN .~lT.NTBLKS.WORK.MXRil.YC) 

10 CONTINUE 
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Tlir argument list for ETBMCEN is described ;is follows: 

C 
C 
C 
C 
C 
C 
i 
C 
C 
C 

C 
C 
C 
C 
C 
C 

C 
C 
C 
C 
C 
C 
C 

L 

PUR-OS- TO URITE THE WON-ZERO BLOCKS JF A BLOCK ROW OF M A T R I X  
I N  ETCGP FORMA1 

ARSUn€N' L I S 1  

1 - BLOC* ROW INDEX 
NTAPE - OUTPUT D I S K  F I L E  

OUTPUT - ARCMENTED MATRIX I N  ETCCP FORMlT 
INDEX - 2 DIMENSIONAL ARRLY FOR THE PROFILE OF fH€ MATRIX 

ROY DIMENSION MTr COLUMN DIMENSION = MI+I 
I N O E X l I r J ) = O  ( I * J ) - I H  BLOCK IS ZERO 
INDEXlI.J)&T.O LDCATION OF (I.J)-TH BLOCK ON NTAPE 

-!r - aoW OIMENSIW OF THE ARRAY INDEX 
JN - INT€GER ARRAY FOR THE RANOOM ACCESS F I L E  NTAPEI AT LEAST 

NTBLKS - NO. OF BLOCK ROUS 
NDBLK - ARRAY TO STORE BLOCK S I Z E S . N D B L K ~ k f 8 L K S + 1 ~ ~ N O ~ O F  RHS 
M R K  - ( 2  OIMENSIGNAL TO USER) 

NXR - ROW G1MENSIC)N O f  YORk 
MXC - COLUMN OIMENSION OF UORK 

l N I B L K S ~ T B L K S * N T B L K S * 3 )  MANY YORD'. LONG 

INPUT ARRAY FOR THE NON-ZERO BLOCKS OF THE I-TH BLOCK ROW 

MUTE SU3ROUTINF. ETCGP ASSUHES ALL '1M NON-ZEROBLOCKS TO BE 
DENSE BI 'LKS.  (SEE THE SAMPLE CALLING PROGRAM) 

ETBMCEN alters tile contents of the array INDEX. 

Step 4. To solve the h e a r  svstem via ETCCP 
COMPLEX WORK (LW) 
INTEGER INDEX(MT.MT.+I ).NDBLK(NT!) 

CALL E1'C~P(NTAPE.INDE)<.NTBL~S.NDBLK.WORK.LW,ITAG) 
The calling sequence of ETCCP is 3s follows: 

SUB ROUT IN E ETCGP( NTAPE .INDEX.NDB LKS.NL)BLK . WORK .LWORK .ITAG 
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SU6ROUTINE ETCGPtNTAPE~IND€X~NTbLKS~NDBLKIWDRKlLWDRK~ITAG)  
OYTIONIKEEP=€IFF~ I N L I  S T = M I  

C********LC******************************************************** 
C 
C PURPOSE M A I N  SUBROUTINE 
C REOUCE MATRIX TO AN UPPER TRIAGULAR MATRIX - C A L L  ETCGPRM 
C REPEAT ROU OPERATION O N  RHS - CALL ETCGPFS 
C 8ACKWARD SURST ITUT I O N  - CALL E T C C W S  
C 
C ARGUMENT L I S T  
C NTAPE - INPUT/WTPUT D I S K  F I L E S  FOR MATRIX  
C INPUT - C R I G I N A L  ARGMENTED MATRIX  
C OUTPUT - ROI) OPERATIONS PERFORMED AN0 UPPER 
C TRIANGULAR FORM AND SOLUTIOY 
c I N D E X  - 2 D I M E N S I W A L  ARRAY FOR THE PROFILE OF THE M A T R I X  
L ROW DIMENSION = NTBLKSv COLUMN DIWENSION = N T B L K S + l  
C I N D E X t I r J ) = O  I I * J t - T H  BLOCK I S  ZERO 
C INDEX(I tJ) .GT.O L O C A T I 3 N  OF t I v J ) - T H  BLOCK ON NfAPE 

C NDdLK - ARRAY TO STORE BLOCK SIZES.NDBLK~NTBLKS+l) t lO,OF RHS 

C LWORK - LENGTH OF THE ARRAV WOaK REGARDED AS COMPLEX 
C LY0RK.G. tUTBLKS**Z + P N T B L K S  + 3*MXB + 3*N) 

C MAXIMUM OF A L L  THE ENTRIES OF THE ARRAV NOBLKI AND WHERE 

N I B L K S  - NO. OF BLOCK ROWS 

c noqu - I-JORKIW ARRAY (COMPLEX TO USER) 

C HHERE MXB = (MXBLK**Z) + (MXBLK+t ) /Z  W I T H  MXBLK = THE 

C hl 13 THE ORDER OF THE SYSTEM 
C I T A 6  - CLIMPUTATIONAL PATH 
C I T A G = l  REDUCE MATRIX TO UPPER TRIANGULAR FORM AN0 
C SOLVE AX=B 
C ITAG.2 REDUCE MATRIX ONLY 
C ITAG=3 SOLVE AX=B ASSUMING A HAS BEEN REDUCED 
C 
C********************~*~~****++************************ 

(The array WORK should be equivalenced to the arrays W and JN as follows: 
EQUIVALENCE (WORK,W) (WW( 1 .MXC+l),JN) 

Step 5 .  

ETRDSOL which has exactly the same calling sequence as ETBMGEN. Its usage is described 

below: 

Read the solution from NTAPE. In this subroutine we provide a subroutine 

DO 10 I= 1 ,NTBLKS 

CALL ETRDSOL( NTAPE .INDEX,MT,NTBLK ,W ,MXR@XC) 
(code to process the part of  the solution corresponding to  the i-th block row) 

10 CONTINUE 
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5.5.2 USING AUORlTHM 11 (SUBROUTINE ETCSM) 

We recommend the following procedure: 

Step 1 .  Same as step 1 of section 5.5.1. 

Step 2. Same as step 2 of section 5.5.1, except call subroutine ETSMGEN 
instead of ETBMGEN. The argument list of ETSMGEN is as follows: 

SUBROUTINE E T S P I G E N ( I r N T 4 Y E ~ I N D E X r M T ~ J N r N T B L K S ~ ~ B L K ~ W R K ~  
I MXRIMXCI NBt MLB r LB r LU 1 

C 
c *************************#***********1**********+*~*** 
C 
C PURPOSE WRITE THE MATRIX I N  A FORM ACCEPTABLE B Y  ETCSH 
C 
C ARGUMENT L I S T  
C 1 NT AP E s I NO€ XI MTs JNr NTBLKS r NOBLK r WORK* MXRr WXC - SEE SUBROUTINE 
C E TBnGEN 
C N @ r M L R * L B e L U  G I V E  THE SPARSITY STRUCTURE OF THE MATRIX 0 
C NB - DIMENSIONEO AS 
C INTEGER NB l MLB , LU+ 2 1 
C N B ( I r l ) = K v  T t E  K-TH @LOCK R 3 W  CONTAINS THE COLUMNS OF 0 
C N B ( I r Z ) = J r  ONLY THE BLOCKS IWsK).M.CE.J CONTAINS THE C0LUM)S 

C FOR T r G E . 3 r  N B t I r T ) = S r  THL S-COLUMNS OF THE K-TH BLOCK COLUMN 

C THEN SET N B ( f r H + Z ) = O  

C OF C 

C I S  I N  0. I f  0 ONLY CONTAINS H COLUMNS OF THE I(-TH @LOCK COLUMN 

C MLB - RIJW DIMENSION OF NB 
C L B  - TOTAL NO. OF BLOCK COLUMNS THAT CONTAINS COLUMNS OF D 
C LU - TUTAL NO. OF NON-ZERO COLUMNS OF D 
C 
c . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  

Step 3. Solve the linear system via ETCSM. The argument list of JTCSM is as follows: 

SUBROUTINE ETCSW~NTAPErINOEXrNTBLKSrNDB'.KrWORKrLWORK~ITAG~ 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
C 
C PURPOSE APPLY THE StERHAN-MORRISON UPDATING FORMULA TO SOLVE 
C IBE+D)X=Br WHERE BE I S  & BLOCKEO BENDED MATRIX. 

SKNBr MLR. LB r LU) 

C A N 0  0 ONLY CONSISTS OF A FEW COLUMNS OF NON-ZEROES. 
C THE NON-ZERO COLUMNS GF 0 IS ASSUMED TO BE STORE0 W I T H  1HE RHS. 
C 
C ARGUMENT L I S T  
C NTAPErINOEXrNTBLKSrNOBLKrUORKrLWORK - SEE SUBROUTINE ETCGP 
C I T A G  - THE VALUE OF I T A G  I S  PASSE0 ON TO ETCGP 
C K N B * M L B * L B * L U  G I V E  THE SPARSITY STRUCTURE OF THE MATRIX 0 
C KNB - D I M E N S I W E D  AS 
C INTEGER KNBt  MLB rLU+2 ) 

C K N B I I * Z ) f J *  ONLY THE BLOCKS (MrK)rM.CE.J CONTAINS THE COLUMNS 
C KNBII~I)=K* THE K-TH a L o c K  ROY LONTAINS THE COLUMNS OF o 
C OF 0 
c FOR T.GE.3r K N B ( I * T ) x S r  THE S-COLUMNS OF THE K-TH BLOCK COLUMN 

C THEN SET KNB I I r H + 2  =O 
C MLB - ROW DIMENSION OF KNB 
C L B  - TOTAL NO. OF BLOCK COLUMNS THAT CONTAINS COLUMNS OF 0 
C L U  - TOTAL NO. OF NO#-ZERO COLUMNS OF 0 
C 
C*******C****t+****************************************************** 

C IS IN D. IF D ONLY CONTAINS H cmuws OF THE K-TH BLOCK COLUMN 
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5.5.3 USING THE ITERATIVE REFINEMENT SUBROUTINE (ETCIT) 

ETCIT requires the original matrix and the output matrix from TECGP to be in different 

files. The usage of ETCIT is obvious from the explanation of its argument list: 

SUBROUTINE 
SWORKrLWORK) 

ETC I T  t N TAPE I 9 I N D E  X I  * NT APE0 p I NOEXO rNDBLK9 NTBLK S i 

C***#**************S*t*t***+L+t,***********~***************~** 

C 
C PURPOSE I T E R A T I V E  REFINEMENT 
C 
C ARGUMENT L1 ST 
C NTAPEI  - INPUT D I S K  F I L E  STORES O R I G I N A L  MATRIX 
C I N O E X I  - 2 DIMENSIONAL ARRAY FOR THE PROFILE OF THE MATRIX I N  
C N T A P E I  (SEE EXPLANATION FOR THE ARGUMENT INDEX I N  
C SUBROUTINE ETCGPl 
C NTAPEO - OUTPUT DISK F I L E  FROM ETCGP. STORES THE UPPER TRIANGULAR FORM 
C AND THE ROY OPERATIONS PERFORMED BV ETCGPi  ALSO THE 
C SOLUTION FROM ETCGP. 
C THE F I N A L  SOLUTION FROM E T C I T  WILL OVERWRITES THE SOLUTION 
C FROM ETCGP. 
C I N D E X 0  - 2 DIMENSII3hlAL ARRAY FOR THE P R O F I L E  OF THE MATRIX I N  
C NTAPEO (SEE EXPLANATION FOR THE ARGUMENT I N D E X  I N  
C SUBROUTINE ETCGP) 
C NTBLKS - NO. OF BLOCK ROUS 
C NOBLK - ARRAY TO STORE BLOCK SI ZES~NDBLK(NTBLKS+l)~NO.OF RHS 
C WORK - WORKING ARRAY lCOMPLEX TO USER) 
C LWORK - LENGTH OF THE ARRAY WORK REGARDED AS COMPLEX 

C W E R E  MXB = IMXBLK**Z)  + tMXBLK+2) /2  WITH MXBLK = THE 

C N IS THE ORDER OF THE SVSTEM 
C ~**********************************************************#*****~#** 

C LWORK.GE. (NTBLKS**Z + 3*NTBLKS + 3*MXB + 3*N) 

C MAXIMUM OF ALL THE ENTRIES OF THE ARRAV NDBLK~ AND WHERE 
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5.6 ERROR MESSAGES 

5.6.1 ERROR MESSAGES FROM ETCGP 

1 .  X’ORKING SPACE TOO SMALL, AT LEAST ************* WORDS ARE 

.U’EEDED RETURN FROM ETCCP. 

2. WRONG CHOICE O F  COMPUTATION PATH, ITAG SHOULD EQUAL TO 1,2 OR 3. 

3. MATRIX SEEMED SLNGULAR, EXIT FROM ETCGP. 

5.6.2 ERROR MESSAGES FROM ETCSM 

1. WORKANG SPACE TOO SMALL, AT LEAST ************* WORDS ARE 

NEEDED RETURN FROM ETCSM. 

2. MATRIX SEEMED SINGULAR, EXIT FROM ETCSM. 

5.6.3 ERROR MESSACES FROM ETCIT 

1. WORKING SPACE TOO SMALL, AT LEAST ************* WORDS ARE 

NEEDED RETURN FROM ETCIT. 

2. CONVERGENCE TOO SLOW, RETURN FROM ETCIT. 
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5.7 SAMPLE PROBLEMS 

5.7.1 SAMPLE PROBLEM 1 

(3 
C 
C 

C 
C 
C 

C 
C 
C 

3 

PROGRAM TGP(IhrPUT,OUTPUT, TAPES=IKPUT, TAPEd=OUTPUT, TAPE8 

THIS PROGRAM ILLCSTRATES THE USE OF ETCGP. 
THE PROFILE O F  THE HTRSX I S  BLOCK TRSADIAGONAL. 
THE SUBBU)CKS ARE 2 X 2 BLOCKS. 
WE CALL THE RANDON NUMBER GENERATOR To GENERATE THE MATRIX ENTRIE 
WE USE THE ROW SUM OF THE MATRIX AS OUR RHS. 

NOTE THE W ARRAY SHOULD BE EQUIVALENCED To WW 
AND J N  SHOULD BE EQUIVALENCED TD WW(l,MXC+l) 

DATA KN/l lO*O/ ,  W/lOOO* ( O., 0.  ) / 
DATA NTBLKS/5/,h;DBLK/2,2,2,2,2,1/ 

EQUIVALENCE (WW, W) , (KN, I N )  (JN, WW( 1,12) ) 

MITE T H i  W ARRAY SHOULD BE EWIVALENCED 'M WW 
AND Jh SHOULD BE EUUIVALENCED To WW(l,MXCtl) 

DATA 
EQUIVALENCE ( w, W) 8 (Kh, I fi) (Jh, WW( 1 , 1 2 )  ) 

GEhERATE IhiDEX ARRAY I N  Iti 

NT1 =&TBLKS 
hiT1 =NTLBKS+l 
hiTM 1 =NTBLKS- 1 

I N ( 1 , 2 ) = 2  
Ihi( 1 , l )  =l 

I N ( 1 , h T l  ) =3 
NS=3 
Do31 =2, NTM1 

I N ( I , I ) = N S * 2  
I hi( I ,  I t1) =hS+3 
I N ( I , N T l ) = N S + 4  
kS=PjS+4 
CO kTI NUE 
IN( NTBLKS, k(iTM1) = N S + ~  
IEr( NTBLKS, NTBLKS) =NS+2 
I hi( hTBLKS, EjTl ) =hS+3 
hiS=NS+3 

I N ( I , I - l ) = N S * I  
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C 
C 
C 

C 

C 
G 

C 
C 

C 
C 
C 

C 
C 

C 

C 
C 
C 

C 

C 

C 
C 
C 

4 

100 

6 

10 

11 
101 

FIND OUT HOW MANY WN-ZERO COLUMNS I N  THE BUCK ROW 

DO41 =I, IUTBLKS 

DO4J=1 NTBLKS 
IF (IN( I, J )  . GT. 0 )  NC( I ) =NC (I ) *NDBLK( J) 

NC(I =O 

WRITE(6,lOO) ( (ZN(1, J) 
FORMAT(*IhDEX ARRAY IN #*,/, ( 1 1 1 5 ) )  

Jtl, 1 1 )  ,I=l, 1 0 )  

GENERATE NTBLKS BLOCK ROW OF THE MATRIX 

DO1 OX ~ 1 ,  NTBLKS 
NCl =kC( I ) +l 

GENERATE NC(I)*20 RANDOM rVUMBERS 
CALL NoGEhi(W,NC(I)*20) 

ZERO OUT WW( . ,NCl)FOR ROW SUM 

hiD=NDBLK ( I ) 

COMPUTE iZOW SUM 
MC=NC( I ) 

WRITE I-TH BLOCK ROW FOR ETCGP 

CALL ETBMGEh ( I, 8 ,  I k, 10, JN, NTBLKS, NDBLK, WW, 1 0 , l l )  

CO NTI NUE 

CALL ETCGP(B,IN,NTBLKS,Nl?BLK,W,lOOO,l) 

TO RED SOLLTIOhi FROF! TAPE8 
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5 . 7 . 2  SAMPLE PROBLEM 2' 

C 
C 
C 

C 
C 
C 

PROGRAM TSM( INPUT,OUTPUT, TAPEStINPUT, TAF%6=OUTFWT, TAPE8) 

THIS PROGRAM ILLUSTRATES THE USE OF ETCSM. 

BLOCK TRIDIANGONAC, AND D ONLY CONSISTS OF 2 NON-ZERO ROWS. 
THE SUBBLOCKS ARE 2 X 2 BLOCKS. 
WE CALL THE RANDOM NUMBER GENERATOR TO GENERATE THE MATRIX ENTRIES 
WE USE THE ROW SUM OF THE MATRIX AS OUR RHS. 

THE PROFILE OF THE MATRIX IS OF THE FORM AsB+D, WHERE B I S  

COMPLEX W ( 1 0 0 0 )  , WW( 1 0 , 1 0 0 )  
INTEGER I N (  1 0 , l l )  , NDBLK( 11 1, JN(  11 51, KN( 1 1 0 )  , NC( l o ) ,  NB( 2,5) 

NOTE THE W ARRAY SHOULD BE EQUIVALENCED To WW 
AND J N  SHOULD BE EQUIVAZlENCED 'ID WW(l,MXC+l) 
EQUIVALENCE ( W, W) , (Kh;, I N ) ,  (JN,  WW( 1,121 
DATA K N / l l O  O/, W / l  OOO* ( 0. , 0 . ) / 
DATA NTBLKS/S/, NDBLK/2, 2 , 2 , 2 , 2 , 1 /  

GENERATE INDEX ARRAY I N  I N  

NT1 =NPBLKS 
NT1 =NTBLKS+l 

I N (  1,ll =l 
I N (  1 , 2 )  =2 
I N (  1, NT1) =3 
NS=3 
DO31 =2, NTMl 

I N ( 1 , I )  =NS*2 
I N ( I , I * l ) = N S + 3  
IN( I ,  N T ~ )  =NSM 
NS=hiS*4 

3 CONTINUE 
I N (  NTBLKS, N T M l  ) =NS 1 
I N (  NTBLKS, NTBLKS) =hlS+Z 
I N (  NTBLKS, NT1) =NS+3 
NS=NS*3 

N T M l =  NTBLKS-1 

I N ( I , I - 1 ) = N S + 1  

C 
DO51 "4, NTBLKS 
N S =  NS *1 

5 I N ( I , Z ) = N S  
C 
C 
C 

C 

C 
C 

DEFINE THE STRUCTURE OF D 

NB( 1,l) =2 
NB( 1 , 2  ) =4 
NB( 1,3)  =1 
N B ( 1 , 4 ) = 2  

kB( 1,5) =O 
FIND OUT H O W  MANY NON-ZERO COLUMNS I N  THE BLOCK ROW 
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C 

C 
C 

C 
C 

C 
C 
C 

C 
C 

C 

C 
C 
C 

C 

C 

C 
C 
C 

DO41 4, NTBLKS 
NC(I)=O 
D04J4, NTBLKS 

4 IF (IN( I, J ) . GT. 0 )  NC( I ) =NC( I ) +NDBLK( J) 

WRITE( 6,100) ((IN(1, J) ,J=l, 11) ,I=l, 10) 

GENERATE NTBLKS BLOCK ROW OF THE MATRIX 
100 FORMAT(*INDEX ARRAY INs*,/,(llIS)) 

DO101 01 , NTBLKS 
NCl=NC(I)*l 

GENERATE NC(1)*20 RANDOM NUMBERS 
CALL NoGEN( W, NC( I) *20) 

ZERO OUT WW( ,,NCl) FOR ROW 3UM 

ND=NDE&K( I) 

COMPUTE ROW SUM 
HC=NC(f ) 

WRITE I-% BLOCX ROW FOR ETCGP 

CALL ETSMGEN ( I # 8, IN, 10, JN, NTBLKS, NDBLK, WW, 10,11 p NB, 2 , 4 2 

10 CONTINUE 

CALL ETCSM( 8,I~,NTBLKS,NDBLK,W,lOOO,l,NB,2,1,2) 

TO READ SOLUTION FROM TAPE8 

DOlII=:, NTBLKS 
C A U  ETRDSOL (1,8,1N,lO,JN,NTBLKS,NDBLK,WW~lO,ll) 
ND=NDBLK( I ) 

11 WRITE(6,lOl )I, WW( J, 1; , J=l,ND) 
lOlFORMAT(lX,IS,*-TH BLOCK SOLUTION*,, / ,  (8E10.4)) 

STOP 
END 
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